Various public health organizations have recommended that yearly influenza vaccination be routinely offered to patients at risk of complications of influenza:
* the elderly (UK recommendation is those aged 65 or above)
* patients with chronic lung diseases (asthma, COPD, etc.)
* patients with chronic heart diseases (congenital heart disease, chronic heart failure, ischaemic heart disease)
* patients with chronic liver diseases (including liver cirrhosis)
* patients with chronic renal diseases (such as the nephrotic syndrom)
* patients who are immunosuppressed (those with HIV or who are receiving drugs to suppress the immune system such as chemotherapy and long-term steroids) and their household contacts
* people who live together in large numbers in an environment where influenza can spread rapidly, such as prisons, nursing homes and dormitories
* healthcare workers (both to prevent sickness and to prevent spread to patients)[43]
* pregnant women[44][45]
In the United States a person aged 50–64 is nearly ten times more likely to die an influenza-associated death than a younger person, and a person over age 65 is over ten times more likely to die an influenza-associated death than the 50–64 age group.[46] Vaccination of those over age 65 reduces influenza-associated death by about 50%.[47][48] However, it is unlikely that the vaccine completely explains the results since elderly people who get vaccinated are probably more healthy and health-conscious than those who do not.[49] Elderly participants randomized to a high-dose group (60 micrograms) had antibody levels 44 to 79 percent higher than did those who received the normal dose of vaccine. Elderly volunteers receiving the higher dose were more likely to achieve protective levels of antibody.[50]
As mortality is high among infants who contract influenza, the household contacts and caregivers of infants should be vaccinated to reduce the risk of passing an influenza infection to the infant.
Data from the years when Japan required annual flu vaccinations for school-aged children indicate that vaccinating children—the group most likely to catch and spread the disease—has a strikingly positive effect on reducing mortality among older people: one life saved for every 420 children who received the flu vaccine.[51] This may be due to herd immunity or to direct causes, such as individual older people not being exposed to influenza. For example, retired grandparents often risk infection by caring for their sick grandchildren in households where the parents can't take time off work or are sick themselves.
Side effectsSide effects of the inactivated/dead flu vaccine injection include:
* mild soreness
* redness
* swelling where the shot was given
* fever
* aches
These problems usually begin soon after the injection, and last 1–2 days.[52]
Side effects of the activated/live/LAIV flu nasal spray vaccine:
Some children and adolescents 2–17 years of age have reported:[53]
* runny nose, nasal congestion or cough
* fever
* headache and muscle aches
* wheezing
* abdominal pain or occasional vomiting or diarrhea
Some adults 18–49 years of age have reported:[53]
* runny nose or nasal congestion
* sore throat
* cough, chills, tiredness/weakness
* headache
Some injection-based flu vaccines intended for adults in the United States contain thiomersal. Despite some controversy in the media,[54] the World Health Organization has concluded that there is no evidence of toxicity from thimerosal in vaccines and no reason on grounds of safety to change to more-expensive single-dose administration.[55]
Flu vaccine virus selectionEach year, three strains are chosen for selection in that year's flu vaccination by the WHO Global Influenza Surveillance Network. The chosen strains are the H1N1, H3N2, and Type-B strains thought most likely to cause significant human suffering in the coming season.
"The WHO Global Influenza Surveillance Network was established in 1952. The network comprises 4 WHO Collaborating Centres (WHO CCs) and 112 institutions in 83 countries, which are recognized by WHO as WHO National Influenza Centres (NICs). These NICs collect specimens in their country, perform primary virus isolation and preliminary antigenic characterization. They ship newly isolated strains to WHO CCs for high level antigenic and genetic analysis, the result of which forms the basis for WHO recommendations on the composition of influenza vaccine for the Northern and Southern Hemisphere each year."[56]
The Global Influenza Surveillance Network's selection of viruses for the vaccine manufacturing process is based on its best estimate of which strains will be predominant the next year, amounting in the end to well-informed but fallible guesswork.[57]
Flu vaccine manufacturingFlu vaccine is usually grown in fertilized chicken eggs. Both types of flu vaccines are contraindicated for those with severe allergies to egg proteins and people with a history of Guillain-Barré syndrome.[58]
On October 5, 2004, Chiron Corporation, a corporation contracted to deliver half of the expected flu vaccine for the United States and a significant portion to the UK, issued a press release[59] that stated it was unable to dispense its stock for the 2004-2005 season, due to suspension of the corporation's license to produce the vaccine by the Medicines and Healthcare Products Regulatory Agency. However, the Centers for Disease Control and Prevention took swift action to enlist the help of other companies such as MedImmune and Sanofi pasteur to supply vaccine in high-risk populations in the United States.
As of November 2007, both the conventional injection and the nasal spray are manufactured using chicken eggs. The European Union has also approved Optaflu, a vaccine produced by Novartis using vats of animal cells. This technique is expected to be more scalable and avoid problems with eggs, such as allergic reactions and incompatibility with strains that affect avians like chickens. A DNA-based vaccination, which is hoped to be even faster to manufacture, is currently in clinical trials, but has not yet been proven safe and effective. Research continues into the idea of a "universal" influenza vaccine (but no vaccine candidates have been announced) which would not need to be tailored to work on particular strains, but would be effective against a broad variety of influenza viruses.
H5N1
H5N1
* Influenza A virus
* subtype H5N1
* Genetic structure
* Infection
* Human mortality
* Global spread
* in 2004, 2005, 2006, 2007
* Social impact
* Pandemic
Vaccines have been formulated against several of the avian H5N1 influenza varieties. Vaccination of poultry against the ongoing H5N1 epizootic is widespread in certain countries. Some vaccines also exist for use in humans, and others are in testing, but none have been made available to civilian populations, nor produced in quantities sufficient to protect more than a tiny fraction of the Earth's population in the event that an H5N1 pandemic breaks out.
Three H5N1 vaccines for humans have been licensed as of June 2008:[61]
* Sanofi Pasteur's vaccine approved by the United States in April 2007,
* GlaxoSmithKline's vaccine Pandemrix approved by the European Union in May 2008, and
* CSL Limited's vaccine approved by Australia in June 2008.
All are produced in eggs and would require many months to be altered to a pandemic version.
H5N1 continually mutates, meaning vaccines based on current samples of avian H5N1 cannot be depended upon to work in the case of a future pandemic of H5N1. While there can be some cross-protection against related flu strains, the best protection would be from a vaccine specifically produced for any future pandemic flu virus strain. Dr. Daniel Lucey, co-director of the Biohazardous Threats and Emerging Diseases graduate program at Georgetown University, has made this point, "There is no H5N1 pandemic so there can be no pandemic vaccine." However, "pre-pandemic vaccines" have been created; are being refined and tested; and do have some promise both in furthering research and preparedness for the next pandemic. Vaccine manufacturing companies are being encouraged to increase capacity so that if a pandemic vaccine is needed, facilities will be available for rapid production of large amounts of a vaccine specific to a new pandemic strain.
Problems with H5N1 vaccine production include:
* lack of overall production capacity
* lack of surge production capacity (it is impractical to develop a system that depends on hundreds of millions of 11-day old specialized eggs on a standby basis)
* the pandemic H5N1 might be lethal to chickens
Cell culture (cell-based) manufacturing technology can be applied to influenza vaccines as they are with most viral vaccines and thereby solve the problems associated with creating flu vaccines using chicken eggs as is currently done.[62] :
Currently, influenza vaccine for the annual, seasonal influenza program comes from four manufacturers. However, only a single manufacturer produces the annual vaccine entirely within the U.S. Thus, if a pandemic occurred and existing U.S.-based influenza vaccine manufacturing capacity was completely diverted to producing a pandemic vaccine, supply would be severely limited. Moreover, because the annual influenza manufacturing process takes place during most of the year, the time and capacity to produce vaccine against potential pandemic viruses for a stockpile, while continuing annual influenza vaccine production, is limited. Since supply will be limited, it is critical for HHS to be able to direct vaccine distribution in accordance with predefined groups (see Appendix D); HHS will ensure the building of capacity and will engage states in a discussion about the purchase and distribution of pandemic influenza vaccine.
Vaccine production capacity: The protective immune response generated by current influenza vaccines is largely based on viral hemagglutinin (HA) and neuraminidase (NA) antigens in the vaccine. As a consequence, the basis of influenza vaccine manufacturing is growing massive quantities of virus in order to have sufficient amounts of these protein antigens to stimulate immune responses. Influenza vaccines used in the United States and around world are manufactured by growing virus in fertilized hens’ eggs, a commercial process that has been in place for decades. To achieve current vaccine production targets millions of 11-day old fertilized eggs must be available every day of production.
In the near term, further expansion of these systems will provide additional capacity for the U.S.-based production of both seasonal and pandemic vaccines, however, the surge capacity that will be needed for a pandemic response cannot be met by egg-based vaccine production alone, as it is impractical to develop a system that depends on hundreds of millions of 11-day old specialized eggs on a standby basis. In addition, because a pandemic could result from an avian influenza strain that is lethal to chickens, it is impossible to ensure that eggs will be available to produce vaccine when needed.
In contrast, cell culture manufacturing technology can be applied to influenza vaccines as they are with most viral vaccines (e.g., polio vaccine, measles-mumps-rubella vaccine, chickenpox vaccine). In this system, viruses are grown in closed systems such as bioreactors containing large numbers of cells in growth media rather than eggs. The surge capacity afforded by cell-based technology is insensitive to seasons and can be adjusted to vaccine demand, as capacity can be increased or decreased by the number of bioreactors or the volume used within a bioreactor. In addition to supporting basic research on cell-based influenza vaccine development, HHS is currently supporting a number of vaccine manufacturers in the advanced development of cell-based influenza vaccines with the goal of developing U.S.-licensed cell-based influenza vaccines produced in the United States.[63] The US government has purchased from Sanofi Pasteur and Chiron Corporation several million doses of vaccine meant to be used in case of an influenza pandemic of H5N1 avian influenza and is conducting clinical trials with these vaccines.[64] Researchers at the University of Pittsburgh have had success with a genetically engineered vaccine that took only a month to make and completely protected chickens from the highly pathogenic H5N1 virus.[65]
According to the United States Department of Health & Human Services:
In addition to supporting basic research on cell-based influenza vaccine development, HHS is currently supporting a number of vaccine manufacturers in the advanced development of cell-based influenza vaccines with the goal of developing U.S.-licensed cell-based influenza vaccines produced in the United States. Dose-sparing technologies. Current U.S.-licensed vaccines stimulate an immune response based on the quantity of HA (hemagglutinin) antigen included in the dose. Methods to stimulate a strong immune response using less HA antigen are being studied in H5N1 and H9N2 vaccine trials. These include changing the mode of delivery from intramuscular to intradermal and the addition of immune-enhancing adjuvant to the vaccine formulation. Additionally, HHS is soliciting contract proposals from manufacturers of vaccines, adjuvants, and medical devices for the development and licensure of influenza vaccines that will provide dose-sparing alternative strategies.[66]
Chiron Corporation is now recertified and under contract with the National Institutes of Health to produce 8,000–10,000 investigational doses of Avian Flu (H5N1) vaccine. MedImmune and Aventis Pasteur are under similar contracts.[67] The United States government hopes to obtain enough vaccine in 2006 to treat 4 million people. However, it is unclear whether this vaccine would be effective against a hypothetical mutated strain that would be easily transmitted through human populations, and the shelflife of stockpiled doses has yet to be determined.[68]
The New England Journal of Medicine reported on March 30, 2006 on one of dozens of vaccine studies currently being conducted. The Treanor et al. study was on vaccine produced from the human isolate (A/Vietnam/1203/2004 H5N1) of a virulent clade 1 influenza A (H5N1) virus with the use of a plasmid rescue system, with only the hemagglutinin and neuraminidase genes expressed and administered without adjuvant. "The rest of the genes were derived from an avirulent egg-adapted influenza A/PR/8/34 strain. The hemagglutinin gene was further modified to replace six basic amino acids associated with high pathogenicity in birds at the cleavage site between hemagglutinin 1 and hemagglutinin 2. Immunogenicity was assessed by microneutralization and hemagglutination-inhibition assays with the use of the vaccine virus, although a subgroup of samples were tested with the use of the wild-type influenza A/Vietnam/1203/2004 (H5N1) virus." The results of this study combined with others scheduled to be completed by spring 2007 is hoped will provide a highly immunogenic vaccine that is cross-protective against heterologous influenza strains.[69]
On August 18, 2006. the World Health Organization changed the H5N1 strains recommended for candidate vaccines for the first time since 2004. "The WHO's new prototype strains, prepared by reverse genetics, include three new H5N1 subclades. The hemagglutinin sequences of most of the H5N1 avian influenza viruses circulating in the past few years fall into two genetic groups, or clades. Clade 1 includes human and bird isolates from Vietnam, Thailand, and Cambodia and bird isolates from Laos and Malaysia. Clade 2 viruses were first identified in bird isolates from China, Indonesia, Japan, and South Korea before spreading westward to the Middle East, Europe, and Africa. The clade 2 viruses have been primarily responsible for human H5N1 infections that have occurred during late 2005 and 2006, according to WHO. Genetic analysis has identified six subclades of clade 2, three of which have a distinct geographic distribution and have been implicated in human infections:
* Subclade 1, Indonesia
* Subclade 2, Middle East, Europe, and Africa
* Subclade 3, China
On the basis of the three subclades, the WHO is offering companies and other groups that are interested in pandemic vaccine development these three new prototype strains:
* An A/Indonesia/2/2005-like virus
* An A/Bar headed goose/Quinghai/1A/2005-like virus
* An A/Anhui/1/2005-like virus
[...] Until now, researchers have been working on prepandemic vaccines for H5N1 viruses in clade 1. In March, the first clinical trial of a U.S. vaccine for H5N1 showed modest results. In May, French researchers showed somewhat better results in a clinical trial of an H5N1 vaccine that included an adjuvant. Vaccine experts aren't sure if a vaccine effective against known H5N1 viral strains would be effective against future strains. Although the new viruses will now be available for vaccine research, WHO said clinical trials using the clade 1 viruses should continue as an essential step in pandemic preparedness, because the trials yield useful information on priming, cross-reactivity, and cross-protection by vaccine viruses from different clades and subclades."[70][71]
As of November 2006, the United States Department of Health and Human Services still had enough H5N1 pre-pandemic vaccine to treat about 3 million people (5.9 million full-potency doses) in spite of 0.2 million doses used for research and 1.4 million doses that have begun to lose potency (from the original 7.5 million full-potency doses purchased from Sanofi Pasteur and Chiron Corp.). The expected shelf life of seasonal flu vaccine is about a year so the fact that most of the H5N1 pre-pandemic stockpile is still good after about 2 years is considered encouraging.[72]